Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
J Inherit Metab Dis ; 46(5): 916-930, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37395296

RESUMO

Until now, only a few studies have focused on the early onset of symptoms of alkaptonuria (AKU) in the pediatric population. This prospective, longitudinal study is a comprehensive approach to the assessment of children with recognized AKU during childhood. The study includes data from 32 visits of 13 patients (five males, eight females; age 4-17 years) with AKU. A clinical evaluation was performed with particular attention to eye, ear, and skin pigmentation, musculoskeletal complaints, magnetic resonance imaging (MRI), and ultrasound (US) imaging abnormalities. The cognitive functioning and adaptive abilities were examined. Molecular genetic analyses were performed. The most common symptoms observed were dark urine (13/13), followed by joint pain (6/13), and dark ear wax (6/13). In 4 of 13 patients the values obtained in the KOOS-child questionnaire were below the reference values. MRI and US did not show degenerative changes in knee cartilages. One child had nephrolithiasis. Almost half of the children with AKU (5/13) presented deficits in cognitive functioning and/or adaptive abilities. The most frequent HGD variants observed in the patients were c.481G>A (p.Gly161Arg) mutation and the c.240A>T (p.His80Gln) polymorphism. The newly described allele of the HGD gene (c.948G>T, p.Val316Phe) which is potentially pathogenic was identified.


Assuntos
Alcaptonúria , Criança , Masculino , Feminino , Humanos , Pré-Escolar , Adolescente , Alcaptonúria/diagnóstico , Alcaptonúria/genética , Alcaptonúria/patologia , Homogentisato 1,2-Dioxigenase/genética , Estudos Prospectivos , Estudos Longitudinais , Mutação
2.
Ophthalmic Plast Reconstr Surg ; 39(5): e139-e142, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37010051

RESUMO

Exogenous ochronosis refers to accumulation of homogentisic acid metabolites in tissues, manifesting as pigmentation of affected tissues. Phenolic compounds are most commonly implicated, including hydroquinone, quinine, phenol, resorcinol, mercury, and picric acid. The affected connective tissues exhibit brownish discoloration when heavily pigmented and the histopathological appearance is characteristic with "banana-shaped" ochre-colored pigment deposits. Herein, the authors describe a rare case of exogenous ochronosis involving the conjunctiva, sclera and skin, as a result of chronic use of Teavigo (94% epigallocatechin gallate), a polyphenol compound with postulated antioxidant and antiapoptotic activity.


Assuntos
Alcaptonúria , Ocronose , Transtornos da Pigmentação , Humanos , Ocronose/induzido quimicamente , Ocronose/diagnóstico , Ocronose/patologia , Alcaptonúria/patologia , Pele/patologia
3.
Am J Med Genet A ; 185(11): 3350-3358, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34165242

RESUMO

From Sir Archibald Garrod's initial description of the tetrad of albinism, alkaptonuria, cystinuria, and pentosuria to today, the field of medicine dedicated to inborn errors of metabolism has evolved from disease identification and mechanistic discovery to the development of therapies designed to subvert biochemical defects. In this review, we highlight major milestones in the treatment and diagnosis of inborn errors of metabolism, starting with dietary therapy for phenylketonuria in the 1950s and 1960s, and ending with current approaches in genetic manipulation.


Assuntos
Albinismo/terapia , Alcaptonúria/terapia , Cistinúria/terapia , Erros Inatos do Metabolismo/terapia , Albinismo/genética , Albinismo/metabolismo , Albinismo/patologia , Alcaptonúria/genética , Alcaptonúria/metabolismo , Alcaptonúria/patologia , Erros Inatos do Metabolismo dos Carboidratos/genética , Erros Inatos do Metabolismo dos Carboidratos/metabolismo , Erros Inatos do Metabolismo dos Carboidratos/patologia , Erros Inatos do Metabolismo dos Carboidratos/terapia , Cistinúria/genética , Cistinúria/metabolismo , Cistinúria/patologia , Humanos , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/metabolismo , Erros Inatos do Metabolismo/patologia , Fenilcetonúrias/genética , Fenilcetonúrias/metabolismo , Fenilcetonúrias/patologia , Fenilcetonúrias/terapia , Desidrogenase do Álcool de Açúcar/deficiência , Desidrogenase do Álcool de Açúcar/genética , Desidrogenase do Álcool de Açúcar/metabolismo , Xilulose/genética , Xilulose/metabolismo
6.
Calcif Tissue Int ; 108(2): 207-218, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33057760

RESUMO

Alkaptonuria (AKU) is characterised by increased circulating homogentisic acid and deposition of ochronotic pigment in collagen-rich connective tissues (ochronosis), stiffening the tissue. This process over many years leads to a painful and severe osteoarthropathy, particularly affecting the cartilage of the spine and large weight bearing joints. Evidence in human AKU tissue suggests that pigment binds to collagen. The exposed collagen hypothesis suggests that collagen is initially protected from ochronosis, and that ageing and mechanical loading causes loss of protective molecules, allowing pigment binding. Schmorl's staining has previously demonstrated knee joint ochronosis in AKU mice. This study documents more comprehensively the anatomical distribution of ochronosis in two AKU mouse models (BALB/c Hgd-/-, Hgd tm1a-/-), using Schmorl's staining. Progression of knee joint pigmentation with age in the two AKU mouse models was comparable. Within the knee, hip, shoulder, elbow and wrist joints, pigmentation was associated with chondrons of calcified cartilage. Pigmented chondrons were identified in calcified endplates of intervertebral discs and the calcified knee joint meniscus, suggesting that calcified tissues are more susceptible to pigmentation. There were significantly more pigmented chondrons in lumbar versus tail intervertebral disc endplates (p = 0.002) and clusters of pigmented chondrons were observed at the insertions of ligaments and tendons. These observations suggest that loading/strain may be associated with increased pigmentation but needs further experimental investigation. The calcified cartilage may be the first joint tissue to acquire matrix damage, most likely to collagen, through normal ageing and physiological loading, as it is the first to become susceptible to pigmentation.


Assuntos
Alcaptonúria , Cartilagem/patologia , Condrócitos/patologia , Ocronose , Alcaptonúria/patologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Ocronose/patologia , Pigmentação
8.
Comput Biol Chem ; 88: 107356, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32823072

RESUMO

Alkaptonuria (AKU) is an ultra-rare disease caused by mutations in homogentisate 1,2-dioxygenase (HGD) enzyme, characterized by the loss of enzymatic activity and the accumulation of its substrate, homogentisic acid (HGA) in different tissues, leading to ochronosis and organ degeneration. Although the pathological effects of HGD mutations are largely studied, less is known about the structure of the enzyme, in particular the pathways for dioxygen diffusion to the active site, required for the enzymatic reaction, are still uninvestigated. In the present project, the combination of two in silico techniques, Molecular Dynamics (MD) simulation and Implicit Ligand Sampling (ILS), was used to delineate gas diffusion routes in HGD enzyme. A route from the central opening of the hexameric structure of the enzyme to the back of the active site trough the protein moiety was identified as the path for dioxygen diffusion, also overlapping with a transient pocket, which then assumes an important role in dioxygen diffusion. Along the route the sequence location of the missense variant E401Q, responsible for AKU development, was also found, suggesting such mutation to be conducive of enzymatic activity loss by altering the flow dynamics of dioxygen. Our in silico approach allowed also to delineate the route of HGA substrate to the active site, until now only supposed.


Assuntos
Alcaptonúria/patologia , Dioxigenases/metabolismo , Homogentisato 1,2-Dioxigenase/metabolismo , Alcaptonúria/enzimologia , Cristalografia por Raios X , Difusão , Dioxigenases/química , Homogentisato 1,2-Dioxigenase/química , Humanos , Modelos Moleculares , Conformação Proteica , Termodinâmica
10.
FASEB J ; 33(11): 12696-12703, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31462106

RESUMO

Alkaptonuria (AKU) is an ultrarare autosomal recessive disorder (MIM 203500) that is caused byby a complex set of mutations in homogentisate 1,2-dioxygenasegene and consequent accumulation of homogentisic acid (HGA), causing a significant protein oxidation. A secondary form of amyloidosis was identified in AKU and related to high circulating serum amyloid A (SAA) levels, which are linked with inflammation and oxidative stress and might contribute to disease progression and patients' poor quality of life. Recently, we reported that inflammatory markers (SAA and chitotriosidase) and oxidative stress markers (protein thiolation index) might be disease activity markers in AKU. Thanks to an international network, we collected genotypic, phenotypic, and clinical data from more than 200 patients with AKU. These data are currently stored in our AKU database, named ApreciseKUre. In this work, we developed an algorithm able to make predictions about the oxidative status trend of each patient with AKU based on 55 predictors, namely circulating HGA, body mass index, total cholesterol, SAA, and chitotriosidase. Our general aim is to integrate the data of apparently heterogeneous patients with AKUAKU by using specific bioinformatics tools, in order to identify pivotal mechanisms involved in AKU for a preventive, predictive, and personalized medicine approach to AKU.-Cicaloni, V., Spiga, O., Dimitri, G. M., Maiocchi, R., Millucci, L., Giustarini, D., Bernardini, G., Bernini, A., Marzocchi, B., Braconi, D., Santucci, A. Interactive alkaptonuria database: investigating clinical data to improve patient care in a rare disease.


Assuntos
Alcaptonúria , Biologia Computacional , Bases de Dados Genéticas , Medicina de Precisão , Doenças Raras , Alcaptonúria/metabolismo , Alcaptonúria/patologia , Alcaptonúria/terapia , Feminino , Humanos , Masculino , Doenças Raras/metabolismo , Doenças Raras/patologia , Doenças Raras/terapia
11.
Sci Rep ; 9(1): 11188, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31371812

RESUMO

The structure, ultrastructure and function of hyaline articular cartilage (HAC) and subchondral bone (SCB), and their involvement in the pathogenesis of osteoarthritis (OA) have been extensively researched. However, much less attention has been focused on the intervening tissue, articular calcified cartilage (ACC) and its role in the initiation and progression of OA. Using both light microscopy (LM) and transmission electron microscopy (TEM), a study of ACC in wild type (WT) mice, and mice with genetic osteoarthropathies (AKU) was undertaken to further understand the role played by ACC in the early stages of OA.Tibio-femoral joints were obtained from BALB/c WT and BALB/c AKU mice aged between 7 and 69 weeks. One joint was processed for routine histological analysis. The tip of the medial femoral condyle (MFC), which contained HAC, ACC, and SCB, was dissected from the contra-lateral joint and processed for TEM.In WT and AKU mice novel microanatomical structures, designated concentric lamellae, were identified surrounding chondrocytes in the ACC. The lamellae appeared to be laid down in association with advancement of the tidemark indicating they may be formed during calcification of cartilage matrix. The lamellae were associated with hypertrophic chondrocytes throughout the ACC.Novel microanatomical structures, termed concentric lamellae, which were present around hypertrophic chondrocytes in the ACC are described for the first time. Their apparent association with mineralisation, advancement of the tidemark, and greater abundance in a model of osteoarthropathy indicate their formation could be important in the pathogenesis of OA and AKU.


Assuntos
Alcaptonúria/complicações , Cartilagem Articular/ultraestrutura , Condrócitos/patologia , Osteoartrite/patologia , Alcaptonúria/genética , Alcaptonúria/patologia , Animais , Cartilagem Articular/citologia , Cartilagem Articular/patologia , Modelos Animais de Doenças , Humanos , Hipertrofia , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Osteoartrite/etiologia
12.
Sci Rep ; 9(1): 10024, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31296884

RESUMO

Nitisinone decreases homogentisic acid (HGA) in Alkaptonuria (AKU) by inhibiting the tyrosine metabolic pathway in humans. The effect of different daily doses of nitisinone on circulating and 24 h urinary excretion of phenylalanine (PA), tyrosine (TYR), hydroxyphenylpyruvate (HPPA), hydroxyphenyllactate (HPLA) and HGA in patients with AKU was studied over a four week period. Forty AKU patients, randomised into five groups of eight patients, received doses of 1, 2, 4 or 8 mg of nitisinone daily, or no drug (control). Metabolites were analysed by tandem mass spectrometry in 24 h urine and serum samples collected before and after nitisinone. Serum metabolites were corrected for total body water and the sum of 24 hr urine plus total body water metabolites of PA, TYR, HPPA, HPLA and HGA were determined. Body weight and urine urea were used to check on stability of diet and metabolism over the 4 weeks of study. The sum of quantities of urine metabolites (PA, TYR, HPPA, HPLA and HGA) were similar pre- and post-nitisinone. The sum of total body water metabolites were significantly higher post-nitisinone (p < 0.0001) at all doses. Similarly, combined 24 hr urine:total body water ratios for all analytes were significantly higher post-nitisinone, compared with pre-nitisinone baseline for all doses (p = 0.0002 - p < 0.0001). Significantly higher concentrations of metabolites from the tyrosine metabolic pathway were observed in a dose dependant manner following treatment with nitisinone and we speculate that, for the first time, experimental evidence of the metabolite pool that would otherwise be directed towards pigment formation, has been unmasked.


Assuntos
Alcaptonúria/tratamento farmacológico , Alcaptonúria/patologia , Cicloexanonas/uso terapêutico , Nitrobenzoatos/uso terapêutico , Tirosina/metabolismo , Adulto , Alcaptonúria/genética , Feminino , Ácido Homogentísico/sangue , Ácido Homogentísico/urina , Humanos , Masculino , Pessoa de Meia-Idade , Fenilalanina/sangue , Fenilalanina/urina , Pigmentos Biológicos/metabolismo , Espectrometria de Massas em Tandem , Tirosina/sangue , Tirosina/urina
13.
J Inherit Metab Dis ; 42(5): 776-792, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31282009

RESUMO

Ochronosis is the process in alkaptonuria (AKU) that causes all the debilitating morbidity. The process involves selective deposition of homogentisic acid (HGA)-derived pigment in tissues altering the properties of these tissues, leading to their failure. Some tissues like cartilage are more easily affected by ochronosis while others such as the liver and brain are unaffected for reasons that are still not understood. In vitro and mouse models of ochronosis have confirmed the dose relationships between HGA and ochronosis and also their modulation by p-hydroxyphenylpyruvate dioxygenase inhibition. Ochronosis cannot be fully reversed and is a key factor in influencing treatment decisions. Earlier detection of ochronosis preferably by noninvasive means is desirable. A cause-effect relationship between HGA and ochronosis is discussed. The similarity in AKU and familial hypercholesterolaemia is explored and lessons learnt. More research is needed to more fully understand the crucial nature of ochronosis.


Assuntos
Alcaptonúria/patologia , Condrócitos/citologia , Ácido Homogentísico/metabolismo , Ocronose/patologia , Alcaptonúria/metabolismo , Animais , Cartilagem/metabolismo , Cartilagem/patologia , Condrócitos/metabolismo , Humanos , Camundongos , Oxirredução , Pigmentação
15.
Osteoarthritis Cartilage ; 27(8): 1244-1251, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31022456

RESUMO

OBJECTIVE: Alkaptonuria (AKU) is a rare, inherited disorder of tyrosine metabolism, where patients are unable to breakdown homogentisic acid (HGA), which increases systemically over time. It presents with a clinical triad of features; HGA in urine, ochronosis of collagenous tissues, and the subsequent ochronotic arthritis of these tissues. In recent years the advance in the understanding of the disease and the potential treatment of the disorder looks promising with the data on the efficacy of nitisinone. However, there are limited methods for the detection and monitoring of ochronosis in vivo, or for treatment monitoring. The study aim was to test the hypothesis that Raman spectra would identify a distinct chemical fingerprint for the non-ochronotic, compared to ochronotic cartilage. DESIGN: Ochronotic and non-ochronotic cartilage from human hips and ears were analysed using Raman spectroscopy. RESULTS: Non-ochronotic cartilage spectra were similar and reproducible and typical of normal articular cartilage. Conversely, the ochronotic cartilage samples were highly fluorescent and displayed limited or no discernible Raman peaks in the spectra, in stark contrast to their non-ochronotic pairs. Interestingly, a novel peak was observed associated with the polymer of HGA in the ochronotic cartilage that was confirmed by analysis of pigment derived from synthetic HGA. CONCLUSION: This technique reveals novel data on the chemical differences in ochronotic compared with non-ochronotic cartilage, these differences are detectable by a technique that is already generating in vivo data and demonstrates the first possible procedure to monitor the progression of ochronosis in tissues of patients with AKU.


Assuntos
Alcaptonúria/patologia , Cartilagem Articular/patologia , Cartilagem da Orelha/patologia , Articulação do Quadril/patologia , Ocronose/patologia , Análise Espectral Raman , Adolescente , Adulto , Idoso , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
16.
J Neurol Surg A Cent Eur Neurosurg ; 80(2): 131-133, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30477028

RESUMO

Alkaptonuria is a rare metabolic disease caused by deficiency of homogentisic acid oxidase and characterized by bluish-black discoloration of cartilages and skin (ochronosis). Defective production of this enzyme results in the accumulation of homogentisic acid (HGA), a tyrosine degradation product, in the bloodstream. Accumulation of HGA and its metabolites in tissues causes ochronosis. The word ochronosis refers to the dark bluish-black discoloration of connective tissues including the sclera, cornea, auricular cartilage, heart valves, articular cartilage, tendons, and ligaments. Neurogenic claudication resulting from focal hypertrophy of the ligamentum flavum in the lumbar spine due to ochronotic deposits has only been previously reported once in the literature. In this article, we present a 71-year-old male patient with alkaptonuria-associated degenerative L3-L4-L5 stenosis, diagnosed after lumbar decompressive laminectomy.


Assuntos
Alcaptonúria/complicações , Ligamento Amarelo/patologia , Vértebras Lombares , Ocronose/etiologia , Idoso , Alcaptonúria/patologia , Humanos , Masculino , Ocronose/patologia
17.
J Cutan Pathol ; 46(1): 74-79, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30294802

RESUMO

Collagenous and elastotic marginal plaques of the hand (CEMPH) is a rare, chronic keratoderma characterized by hyperkeratotic linear plaques located along the radial and ulnar aspects of the hands bilaterally. As an isolated finding, CEMPH occurs secondarily to chronic trauma and photodamage. Herein, CEMPH is described as a manifestation of alkaptonuria (AKU). In addition to keloidal collagen, ochronotic fibers and fragmented, thickened elastic fibers were observed. Additionally, mucin deposition-not previously described in this clinical context-was also identified. Given their overlapping clinicopathologic features, CEMPH due to AKU should be distinguished from the acquired variant as well as acrokeratoelastoidosis.


Assuntos
Alcaptonúria , Tecido Elástico , Mãos/patologia , Ceratodermia Palmar e Plantar , Pele , Alcaptonúria/diagnóstico , Alcaptonúria/metabolismo , Alcaptonúria/patologia , Tecido Elástico/metabolismo , Tecido Elástico/patologia , Feminino , Humanos , Ceratodermia Palmar e Plantar/diagnóstico , Ceratodermia Palmar e Plantar/metabolismo , Ceratodermia Palmar e Plantar/patologia , Pessoa de Meia-Idade , Pele/metabolismo , Pele/patologia
18.
Skeletal Radiol ; 48(5): 819-822, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30406834

RESUMO

Alkaptonuria is a rare inborn metabolic disorder due to a mutation in the homogentisic acid oxidase enzyme (HGO) gene on chromosome 3q. As HGO is deficient in alkaptonuria patients, there is an accumulation of homogentisic acid in the blood and urine. Homogentisic acid gets deposited in the soft tissues, tendons, cartilages, large joints and intervertebral discs. Ochronosis usually affects the dorsolumbar spine and typically spares the cervical spine and sacroiliac joints. However, in this case of isolated ochronosis, we report co-existent extensive cervical spine degenerative changes and cervical vertebral fusion, which has not been described in the literature so far.


Assuntos
Alcaptonúria/diagnóstico por imagem , Vértebras Cervicais/diagnóstico por imagem , Imagem Multimodal , Doenças da Coluna Vertebral/diagnóstico por imagem , Alcaptonúria/patologia , Vértebras Cervicais/patologia , Diagnóstico Diferencial , Humanos , Doenças da Coluna Vertebral/patologia
20.
Mol Genet Metab ; 125(1-2): 127-134, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30055994

RESUMO

QUESTION: Does Nitisinone prevent the clinical progression of the Alkaptonuria? FINDINGS: In this observational study on 39 patients, 2 mg of daily nitisinone inhibited ochronosis and significantly slowed the progression of AKU over a three-year period. MEANING: Nitisinone is a beneficial therapy in Alkaptonuria. BACKGROUND: Nitisinone decreases homogentisic acid (HGA), but has not been shown to modify progression of Alkaptonuria (AKU). METHODS: Thirty-nine AKU patients attended the National AKU Centre (NAC) in Liverpool for assessments and treatment. Nitisinone was commenced at V1 or baseline. Thirty nine, 34 and 22 AKU patients completed 1, 2 and 3 years of monitoring respectively (V2, V3 and V4) in the VAR group. Seventeen patients also attended a pre-baseline visit (V0) in the VAR group. Within the 39 patients, a subgroup of the same ten patients attended V0, V1, V2, V3 and V4 visits constituting the SAME Group. Severity of AKU was assessed by calculation of the AKU Severity Score Index (AKUSSI) allowing comparison between the pre-nitisinone and the nitisinone treatment phases. RESULTS: The ALL (sum of clinical, joint and spine AKUSSI features) AKUSSI rate of change of scores/patient/month, in the SAME group, was significantly lower at two (0.32 ±â€¯0.19) and three (0.15 ±â€¯0.13) years post-nitisinone when compared to pre-nitisinone (0.65 ±â€¯0.15) (p < .01 for both comparisons). Similarly, the ALL AKUSSI rate of change of scores/patient/month, in the VAR group, was significantly lower at one (0.16 ±â€¯0.08) and three (0.19 ±â€¯0.06) years post-nitisinone when compared to pre-nitisinone (0.59 ±â€¯0.13) (p < .01 for both comparisons). Combined ear and ocular ochronosis rate of change of scores/patient/month was significantly lower at one, two and three year's post-nitisinone in both VAR and SAME groups compared with pre-nitisinone (p < .05). CONCLUSION: This is the first indication that a 2 mg dose of nitisinone slows down the clinical progression of AKU. Combined ocular and ear ochronosis progression was arrested by nitisinone.


Assuntos
Alcaptonúria/tratamento farmacológico , Cicloexanonas/administração & dosagem , Nitrobenzoatos/administração & dosagem , Ocronose/tratamento farmacológico , 4-Hidroxifenilpiruvato Dioxigenase/metabolismo , Alcaptonúria/epidemiologia , Alcaptonúria/metabolismo , Alcaptonúria/patologia , Progressão da Doença , Feminino , Ácido Homogentísico/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Ocronose/epidemiologia , Ocronose/metabolismo , Ocronose/patologia , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA